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Fig. 4. Calculated versus measured gain with short 0.411 in from
diode center. Terminal admittance data used in the calculations were
derived from measurements taken with the short 0.142 in from center.
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Fig. 6. Measured gain of computer optimized amplifier.

variables) was designed to optimize an amplifier for 10-dB gain
over the 30-34-GHz range. Step discontinuities were accounted for
in the program. Almost arbitrary initial conditions shown in Fig. 5
led to the final values and computed gain shown. The structure was
fabricated and produced over 10-dB gain over a 3.5-GHz band
centered 5 percent lower than calculated (Fig. 6). Other positions
of the diode and short have produced gain!2-bandwidth products
even higher than 15 GHz, indicating the potential usefulness of this
type of fabrication. .
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Optimization of Microwave Networks

CHRISTAKIS CHARALAMBOUS, MEMBER, IEEE, AND
ANDREW R. CONN

Abstract—The application of a new algorithm for minimax op-
timization is investigated. Unlike most of the previously published
algorithms the new algorithm uses to its advantage certain obvious
properties of the minimax function, namely, that the discontinuities
in the first derivatives can be characterized by projections. An
N-section transmission-line transformer is used as a test problem.

I. INTRODUCTION

The problem under consideration is to minimize M, (z) where
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Fig. 5, Computer optimization of two-step matching transformer for

10-dB gain amplifier (80-34 GHz).
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The objective function M (z) has discontinuous first partial deriva-
tives at points where two or more maxima are equal, even if f,(z),
1 < ¢ < m have continuous first partial derivatives. Thus we cannot
directly use the well-known gradient methods to minimize M, (z).

Some of the most relevant algorithms for solving the above prob-
lem are due to Waren ef al. [1], Osborne and Watson [2], Bandler
et al. [3], and Bandler and Charalambous [4]-[6]. See also [7].

The first method transforms the problem into a nonlinear pro-
gramming problem and solves it by well-established methods. The
second and third methods use linear programming to determine the
direction of search and then a linear search follows along the direction
of search. The fourth method tries to smooth the function around
the places where M,(z) has discontinuous first partial derivatives
by using the generalized least pth objective function and by doing
this we can use efficient gradient methods.

In our algorithm the direction of search at each iteration consists
of two components. The first, the horizontal component which tries
to keep locally the same set of the functions near active (two or
more functions are considered near active if they are equal to the
present maximum up to a specified tolerance) and at the same time
to decrease the value of M,(z). (We do this by using projection
matrices.) The second, the vertical component, attempts to satisfy
the near active functions exactly by means of linearization. A linear
search follows after the horizontal component has been calculated.
The linear search incorporates several simple features of the algo-
rithm, and numerical results to date suggest the resulting algorithm
is very efficient. Both components are obtained by transforming
the minimax problem into its equivalent nonlinear programming
problem (see, for example, [17).

II. THEORETICAL CONSIDERATIONS

Notation: R* is an n-dimensional real vector space. The minimax
problem can be transformed into the nonlinear programming prob-
lem: minimize z (a new independent variable) subject to

. (2,2) =z — f.(2), i€ [M], zCR
E(xe) = {t € [M]|l2z — fi(z) | < €} (active “constraints’’)
I(z,e) = [M\E(z,e) (inactive “constraints’’)
¢ = [1,0,+++,077 an (n + 1)-dimensional unit vector.
The Algorithm
Step 0: Label = 0.
A. To Determine the Horizontal Direction

Step 1: Set 2 = M ;(z%). Determine the active ‘“constraints” at
z*, In other words determine E (z%,¢).
Step 2: Determine the projection matrix. For j = 0 let

P® =T (the (n + 1) X (n 4 1) identity matrix)
Ao = § (the empty set).
Now for an arbitrary integer j > 0 we shall define

V" (2,2)

NGO = . .

VT (2,2)
Also, A; = (1,75, * *,2;) has been defined at the j — 1 step. Let
PG = I — (ND)YI[N® (N®)TTING,

(Note: In practice, of course, we do not in fact actually compute
matrix inverses but use the iterative formulas of Rosen.) P is an
(n +1) X (n 4+ 1) matrix which projects every vector orthogonal
to the space spanned by the vectors Ve, Vi, -« -, Vi Set

¢ = PWe.

(Note that ¢ is an uphill direction.)
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(¢)TVi(x,2)
(g 111 V4 (y2) ]

[By || = || we mean (zTz)V2.]If — (¢P)TVé,,,,(2,2) < O then
Ajn = A; U {ija}

|4 € E(ze) \Ai} .

Ti = {the 7 that maximizes

Otherwise,
A(ze) = A;
P(x,e) = p¥
q(z,e) = ¢\,

However, if the number of elements in the index set A; reaches
n + 1 go to Step 2a below. Otherwise, go to Step 3.

B. Check if Optimum is Reached
Step 3:1f || ¢ || < ¢ and label 6 or if ¢ < 107% stop.

C. Linear Search
Siep 4: Determine v > 0 such that

1€ [M]

is minimized, where § is the ¢ of Step 2 with the first component
deleted.

For details of how this is done and whether exact minimization is
required, see the subalgorithm ‘“The Linear Search Algorithm’’
below. Put z = a* — 7q.

Step 5: Decision as to whether to do the vertical step or not. If
the number of active constraints has not changed in three consecu-
tive iterations, and || ¢ || < 0.1 or if label = 6 go to Step 6. Other-
wise, go to Step 1, setting 2**! = .

max f; (z*F — §),

D. The Vertical Step
Step 6: Set z = M,;(x). Determine E(z,¢) and hence

Vén
N, = « |, where E(z,e) = {1,---,5}.
Vi,
Put
v(x,e) = ~NT(N,N,T) &
where
T = (¢1,* i)
Put
Ziemp = Z + v (with first component missing)
=z + 7.
If

max f; (Tiemp) < max fix,
te{M] i€[M]
put 2% = Ty, and go to Step 0.
Step 2a: The number of elements in 4; equals n + 1 means one
of two possibilities.
a) We have reached the neighborhood of the optimurn.
b) We have constraints considered active that actually are not.
This situation is handled in two ways. First, by ensuring that we
take a vertical step and second by reducing e Algorithmically, set
label = 6, put ¢ = ¢/10, and go to Step 5.

The Linear Search Algorithm

Step 1: Estimate any new funetion to become active. We consider
all inactive constraints ¢; and estimate, in turn, the step size to make
each ¢, zero. Hence we calculate

__¢i(@h)

- i € I(zbe).
vorhyg’ €T

]
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In other words, if ¢;, is linear we calculate r; so that ¢;((2,2%) —
7;¢) = 0 and in general we linearize the ¢’s.

Step 2: Omitting unlikely values of ;, estimate the optimum 7 by
linearizing the minimax function.

For j € I(z*%¢) do the following. If =; < 0 or =; > 10* neglect it
as inadmissible. Otherwise, calculate

Fi &fu@®) — nVf@)Tg, i € [M]

Put

ﬁj = max ﬁ,
ie[M]

Now, determine [ such that

jEeEIEEe\{j]7i <0 or

F; = min 1/7\,', 7] > 104}.
Put 755t = 71.
Step 3: Determine if 7,y is acceptable. Caleulate the true minimax

value at
~ -
¢ = 2% — 7opef

If this new value is an improvement over the old value, then take
7 = 7Top and zFtl = Fk,

Otherwise, use cubic line search on the maximum of the functions
taking 7., as an upper bound.

In [87 the authors proved that the above algorithm will converge
to the minimum under mild assumptions.

Comments on the Algorithm

One useful way of looking at the above algorithm is as follows.

First, our direction of search is obtained by formulating the mini-
max problem as a nonlinear programming problem in the standard
way. Whereupon the horizontal and vertical steps are obtained
analogous to Conn [9] and Conn and Pietrzykowski [107]. Secondly,
however, instead of using the determined horizontal direction to
minimize a penalty function (as in [9] and [10]) we proceed to do
our minimization on the min~maz function directly.

The horizontal step will give us a direction which decreases z and
is orthogonal to the gradient vectors Ve, Veig = *, Ve (dig,Pegy® ==,
&, is a subseb of the active constraints. The remaining active con-
straints locally increase in the direction given by the horizontal
step since this is the basis on which the projection matrix was
determined).

Thus we are trying to keep the values of ¢ij ¢y« * *,¢:; unchanged
(if all of them were exactly equal their values will be equal to zero
since 2 = maxiepn fi).

Now let us assume that we succeed in keeping ¢, « » * ¢:; unchanged.
Since z decreases it follows that the f; will decrease by the same
amount (from the definition of ¢.).

In the case of linear functions the above is exactly true. In the
general case it is approximately true in that we are linearizing locally.

This shows that the horizontal direction tries to follow the path
of discontinuous derivatives. The way we build up the projection
matrix guarantees that the gradient vectors Ve, Ve, « <+, Ve, are
linearly independent and therefore the matrix N@(N®)T is non~
singular and its inverse exists (this was implemented by Conn and
Pietrzykowski [10]). This is an important difference between the
way we handle the projection matrix and the way Rosen does [117].

The vertical step tries to make the near active functions equal,
and by doing this an effort is made to get exactly on the line of the
discontinuous derivatives, which is very desirable when we are close
to the optimum point.

In practice we do not use an exact cubic linear search but merely
ask for sufficient improvement in the minimax value.

If in Step 4 of the main algorithm we decided to do the vertical
step then we dispense with the estimation of 7, as above and
merely do the cubic search. The motivation for this is as follows.
The estimates for r; are based on the surmise that some new func-
tion will become active, whereas the vertical step is based on the
assumption that this will not be the case. '
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IT1I. EXAMPLES

The algorithm has been applied to a wide range of problems. We
will illustrate here its performance on the design of a two-section
and a three-section 100-percent relative bandwidth 10:1 trans-
mission-line transformer problem [3], [4], [6]. Specifically, we
want to

min max |pe(z,¢) |
z  Ye[¥lu]

where p is the reflection coefficient, ¢ is the frequency in gigahertz,
Y1 = 0.5 GHz, ¢». = 1.5 GHz. As usual we will use a finite number
of sample points of ¥, and so we obtain

fi@) = lpi(x) | = | plzs) |.

All the numerical results were obtained by using double precision
IBM 360/75 computer.

Two-Section Transformer

For the two-section transformer we used 11 uniformly spaced
frequency points of ¢. The section lengths I; and l; and the charac-
teristic impedances z: and 2. may be considered as variables.

At first we kept Iy = Iz = I, and used z, and 2; as variables. I, is
the quarter-wavelength at center frequency. Starting from the point
z1 = 1, 22 = 3, the new algorithm generated the results shown in
Table I. It is important to note that the algorithm took 9 iterations
and only 16 function evaluations to produce very accurate results.
This means that the linear search algorithm works extremely well
in this case. In Fig. 1 we show the path taken by the algorithm, from
which it can be seen that the algorithm follows ridges (a(b) denotes
the point reached at iteration @ after b function evaluations).

Table IT shows the results from four different starting points.

Table IIT shows the results by varying the lengths and the im-
pedances from two different starting points.

Three-Section Transformer
For the three-section transformer we used the following sample
points of ¢ in gigahertz
{0.5,0.6,0.7,0.77,0.9,1.0,1.1,1.23,1.4,1.5}.

Table IV shows the results from two different starting points. It
should be noted that, from the second starting point, we do not

TABLE 1

Resurts For THE Two-SuctioN 10:1 QUARTER-WAVE TRANSFORMER
OVER 100-PERCENT BANDWIDTH

£ = £, =8 = Starting point z, = 1,0, 2y = 3.0

1 2 q 1
Number of Number of °
Function

Iterations Evaluations * X Mg (0
0 1 1 3
1 2 1.49152 3.00439 0.54402
2 3 1.62678 2.99891 0.49863
3 4 1.94797 3.94177 0.44792
4 5 1.98645 3.93111 0.43749
5 7 2,14988 4.31621 0.43134
6 8 2.15828 4,31264 0.42933
7 10 2.20976 4.44209 0.42882
8 3 2.22696 4.45590 0.42877
9 14 2.22777 4.45550 0.42858
9 16 2.23330 4.46661 0.42857

a The number of function evaluations are cumulative, i.e., itera-
tion seven, for example, took two function evaluations.
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Fig. 1. Example illustrating the path taken by the new algorithm.

TABLE II

OpTIMIZATION OF A TwoO-SECTION QUARTER-WAVE TRANSFORMER
OVER 100-PercENT BanDWIDTH (I = 1 = [;)

a
Starting Point Function Evaluations

2z

1
1.0 3.0 16
1.0 6.0 14
3.5 6.0 13
3.5 3.0 14

= Number of function evaluations to reach a reflection coefficient
of 0.42857.

TABLE TII

OpTiMizaTioON OF A Two-SECTION 10:1 TRANSFORMER OVER A
100-PERCcENT BANDWIDTH WITH VARIABLE LENGTHS AND

IMPEDANCES
Starting Point Function Evaluatijons
lllﬂ,q L2/£q 2y 2y A B
1.0 1.0 1.0 3 10 16
1.2 0.8 3.5 3.0 41 75

A: Function evaluations required to bring the reflection coefficient
within 0.01 percent of its optimum value.

B: Function evaluations required to bring the reflection coefficient
to 0.42857.

appear to be converging rapidly to the solution. However, at the
point, obtained in 80 function evaluations the “active’” functions are
all within 1072 of each other and the directional derivative for z in
the corresponding nonlinear programming problem is of order 1075.
Furthermore, the active functions are correctly identified. Conse-
quently, it is reasonable to assume that the answer obtained is
acceptable. Should full accuracy be desired it can be obtained, but,
understandably, convergence is slow. In fact the answer is obtained
to 7 significant figures after 200 function evaluations.
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TABLE IV
OpPTIMIZATION OF A THREE-SECTION TRANSFORMER OVER A
100-PERCENT BANDWIDTH WITH VARIABLE LENGTHS AND
ImpEDANCES

Starting Point Function Evaluations

2,/% 2,/% z

1'7q 2°7q 37%q 71 z

2 z A 3

1.0 1.0 1.0 1.0 3.16228 10.0 38(0.19735) 67(0.19729)

0.8 1.2 0.8 1.5 3.0 6.0 79(0.19731) _162(0.19729)

In comparing our numerical results with the previous published
results [3], [4], [6], it can be seen that the new algorithm is at
least as efficient as the existing algorithms, and our experience sug-
gests it is better.

IV. CONCLUSIONS

A new algorithm for computer-aided minimax optimization has
been presented. From the limited numerical results presented here,
along with other experience (see [87]) we have, it seems that the
algorithm is efficient. It is important to note that if the functions
are linear then the minimax function will be piecewise linear and
the present algorithm will take into consideration this fact. The
authors are presently investigating this and preliminary results are
encouraging. In fact the algorithm [12] will terminate in a finite
number of steps in this case, and appears superior to any previous
linear L, algorithm. Also, we found that our linear search works
very well, and to the authors’ knowledge it is the first time a special
linear search was used to minimize minimax functions.

It should be pointed out that our horizontal component is the
same as the direction of search at each iteration of the algorithm
proposed by Bandler ef al. [37, but in their paper they have not
considered the vertical step which means that their algorithm will
only reach the optimum within a supplied tolerance and final con-
vergence in their case is very difficult. Furthermore, they take the
linear programming approach whereas we use orthogonal projections.
The connections between these two approaches are well known. It
is suggested that optimization problems of a similar nature, for
example, standard nonlinear programming problems with an objec-
tive function that is continuous but has discontinuous derivatives,
might be solved by an analogous method.

The mathematical background with proofs of convergence, and
80 on, is rather involved and lengthy. It is available elsewhere [87].
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Minimax Optimization by Algorithms
Employing Modified Lagrangians

OLOV EINARSSON

Abstract—Two general, modified Langrangian algorithms
related to recent developments in nonlinear programming are pre-
sented. The methods give accurate results and are easy to program.
An N-section transmission-line transformer is used as a test
problem for minimax (equal ripple) optimization and the methods
are compared to existing algorithms for network optimization.

I. INTRODUCTION

There exists a large class of optimization problems of engineering
interest where some finite-dimensional functional is minimized (or
maximized) subject to an equal ripple condition. The purpose of
this short paper is to draw attention to the existence of two effec-
tive, recent algorithms which can be applied with advantage to this
type of problem. While not new, the methods do not appear to have
been applied to microwave problems before. The methods proposed
are quite general and the choice of a transmission-line transformer
problem as an example is only dictated by its use as a test problem
in previous works on minimax optimization [1]-[3].

Consider the following minimax problem. Find the vector £ which
minimizes the real-valued function f(z); i.e., find

min f(z) 1
zeRM
where f(z) is defined as
f(@) & max o) [* 2)

vel

and p is the reflection coefficient of the N-section lossless trans-
mission-line transformer shown in Fig. 1. In (2) the frequency »,
normalized to some suitable frequency », is varied either over a
closed interval

1 = Don] (3a)

or over a finite set

I = {V;}ly.

(3b)

The components of the n~-dimensional vector x in (1) are the (real)
characteristic impedances and the lengths of the transmission-line
sections. In one version the lengths of the sections are kept constant
and equal to A\¢/4 where Ao = ¢/r.. The corresponding z vector is

Manuscript received November 4, 1974; revised May 5, 1975.

The author was on leave from the University of Lund, at the Division
of Radio and Electrical Engineering, National Research Council of
Canada, Ottawa, Ont., Canada. He is now back at the College of Engi-
neering, University of Lund, Lund, Sweden.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, OCTOBER 1975

Fig. 1. 100-percent relative bandwidth 10:1 transmission-line trans-

former.

(ZI,ZZ,"’,ZN), n=N

z

ll=lz= e =ZN=)\0/4:. (43.)

Alternatively, the lengths of the transmission-line sections may also
be varied, resulting in an z vector

r = (Zl,Zz, .. ',ZN,ll,lz, .. ‘,lN), n = 2N. (4b)

The solution of the transmission-line transformer problem is known
in terms of Chebyshev polynomials. The optimal lengths all turn
out to be equal to A¢/4 and the optimal impedances can be deter-
mined from the polynomial expressing the insertion loss function
[4]. However, the methods of this investigation do not rely on this

special polynomial structure of the problem.

II. DISCUSSION OF METHODS

It is readily seen that the unconstrained minimization problem
given by (1), (2), and (3b) is equivalent to the following problem:

min f; (z) (5)

weR™
subject to the M — 1 nonlinear constraints
filz) —filz) £0, ©=28,---,M (6)
where we have defined
@) & 3 lo@w) 2 (N

and where we have used the fact that | p(z,») | takes its maximum
value at the left end point »; of the frequency range.

One well-established way of handling a nonlinear constrained
optimization problem is to introduce a Lagrange multiplier for each
constraint and construct a Lagrangian which will be stationary at
the solution point. However, in the treatment of nonconvex prob-
lems, the usefulness of the Lagrangian is limited by the fact that a
stationary point may not necessarily correspond to a minimum.
Hestenes [5] and Powell [6] independently discovered that this
drawback could be overcome by augmenting the Lagrangian with a
quadratic penalty function term making the problem locally convex
in, a neighborhood of the solution point. A large number of different

.modified Lagrangians (also called “exact penalty functions”’ or

“augmented Lagrangians”) have been proposed both for problems
with equality and inequality constraints (7], [8] The modified
Lagrangians employed in this short paper are given explicitly by
(Al) and (A4) of Appendix A.

In most cases the Lagrange multipliers related to an optimization
problem are unknown and have to be calculated during the mini-
mization procedure. One way of doing this is to employ the saddle-
point property of the modified Lagrangian L (z,x) in the product
space [z,n] where u is the multiplier vector, and solve the dual
problem, i.e., to find

max min L (z,u) ®)
peRM zcRN
by iterating alternately in z and u space. The updating of the
multipliers can be done in different ways. A very simple rule is used
in the Hestenes—Powell method. For the routine VFO1A [9] advan-
tage is taken of the fact that if the unconstrained minimizations are



