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Fig. 3. Termfzml diode admittance parameter for one vertical diode

position.
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Fig. 4. Calculated versus measured gain with short 0.411 in from

diode center. Terminal admittance data used in the calculations were

derived from measurements taken with the short 0.142 in from center.
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Fig. 5. Computer optimization of two-step matching transformer for

10-dB gain amplifier (30-34 GHz).
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Fig. 6. Measured gain of computer optimized amplifier,

variables) was dasigned to optimize an amplifier for 10-dB gain

over the 30-34GHz range. Step discontinuities were accounted for

in the program. Almost arbitrary initial conditions shown in Fig. 5

led to the final values and computed gain shown. The structure was

fabricated and produced over 10-dB gain over a 3.5-GHz band

centered 5 percent lower than calculated (Fig. 6]. Other positions

of the diode and short have produced gainll~btmdwidth products

even higher than 15 GHz, indicating the potential usefulness of this

type of fabrication.
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Optimization of Microwave Networks

CHRISTAKIS CHARALAMBOUS, MEMBER, IEEE, AND
ANDREW R. CONN

Abstract—The application of a new algorithm for minimax op-

timization is investigated. Unlike most of the previously published

algorithms the new rdgorithm uses to its advantage certain obvious

properties of the minimax function, namely, that the discontimdties

in the first derivatives cah be ch~acterized by projections. ~
N-section transmission-line trsmformer is used as a test problem.

I. INTRODUCTION

The problem under consideration is to mitilze Mf (z) where

Mf (z) = max fi (z)
1<{<%

z = [$?132.. .zn]~

[M] = {1,2, . . ..~}.
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Theobjective function ikff(x) hssdkcontinuous first partial deriva-

tiveeat points where two ormoremaxima are equal, even ifj, (z),
{

ij+l = the i that maximizes
(q~)~voi (W) .

1 ~ i ~ m have continuous first partial derivatives. Thus we cannot }ll@)llllv@t(%z)Ii 12c ‘(@)\Ai .
directly use the well-known gradient methods to minimize Mj (z). [By 1]z \ [ we mean (Z~Z)’/2._J If – (q@)~VC$,,+l (z,z) <0 then

Some of the most relevant algorithms for solving the above prob-

lem are due to Waren et al. [1], Osborne and Watson [2], Bandler A/+i = A; U {ii+,].

et al. [3], and Bandler and Charalambous [4]–[6 ]. See also [7]. Otherwise,
The first method transforms the problem into a non.lhear pro-

gramming problem and solves it by well-established methods. The
A (z,c) = Aj

second and third methods use line= programming to determine the P (z,.) = p(i)

direction of search and then a linear search follows along the dh-ection

of search. The fourth method tries to smooth the function around
q (2,.s) = q(~).

the places where Mf (z) has discontinuous first partial derivatives

by using the generalized least pth objective function and by doing

this we can use efficient gradient methods.

In our algorithm the direction of search at each iteration consists

of two components. The first, the horizontal component which tries

to keep locally the same set of the functions near active (two or

more functions are considered near active if they are equal to the

present maximum up to a specified tolerance) and at the same time

to decreme the value of Mf (z). (We do this by using projection

matrices. ) The second, the vertical component, attempts to satisfy

the near active functions exactly by means of linearization. A linear

search follows after the horizontal component has been calculated.

The linear search incorporates several simple features of the algo-

rithm, and numerical results to date suggest the resulting algorithm

is very efficient. Both components are obtained by transforming

the minimax problem into its equivalent nonlinear programming

problem (see, for example, [1]).

II. THEORETICAL CONSIDERATIONS

Notatwn: Rn is an *dimensional real vector space. The minimax

problem can be transformed into the nonlinear programming prob-

lem: minimize z (a new independent variable) subject to

O* (w) = z – f. (z), ‘i E [M], ZER1

E(z,c) = {i ~ [M] II z – j~(z) I < C) (active “constraints”)

I (z,c) = [M]\E (z,,) (inactive “constraints”)

e = [1,0,. ... ()]2’ an (n + 1) -dimensional unit vector.

The Algorithm

Step O: Label = O.

A. To Detzrmine the Horizontal Direction

Step 1: Set z = Mf (x~). Determine the active “constraints” at
~k. In other words determine E (x~, 6).

~lqo .2: Determine the projection matrix. For j = O let

P@J = I (the (n + 1) X (n + 1) identity matrix)

A, = ~ (the empty set).

Now for an arbitrazy integer j > Owe shall define

[1

v+,l~(z,z)

N(i) = : .
.

vh,~(z,z)

Also, A; = (i,,i,,. . .,ii) has been defined at the j – 1 step. Let

p(i) = ~ – (N($)) ~[N(i) (N(i)) T]–IN(i).

However, if the number of elements in the index set A j reaches

n + 1 go to Step 2a below. Otherwise, go to Step 3.

B. Check ij Optimum is Reached

Step 3: If \l q 1] < e and label #6 or if c < 10ti stop.

C. Linear Search

Step 4: Determine T >0 such that

is minimized, where tj is the q of Step 2 with the first component

deleted.

For details of how this is done and whether exact minimization is

required, see the sub algorithm “The Linem Search Algorithm”

below. Put x = @ — @

Step 5: Decision x to whether to do the vertical titep or not. If

the number of active constraints has not changed in three consecu-
tive iterations, and II q II <0.1 or if label = 6 go to Step 6. Other-

wise, go to Step 1, setting z~+l = x.

D. The vertical Step

Step 6; Set z = Mf (z). Determine E (z,e) and hence

[“1
VI#q

N.= . , where E(x, e) = {1,. . .:,j}.
.

vtf#

Put

v (x,.s) = -N.T(N,N,T)-lC=I

where

*T = (951,.. .,q$f).

Put

xt~~p = x + v (with first component missing)

If

max ~~(xh~P) < max j; (3,
& [M] is [M]

put Xk+l = xt,~~ and go to Step O.
Step 2a: The number of elements in Af equals n + 1 means one

of two possibilities.

a) We have reached the neighborhood of the optimum.

b) We have constraints considered active that actually are not.

This situation is handled in two ways. Fh-st, by ensuring that we

take a vertical step and second by reducing e. Algorithmically, set

label = 6, put e = c/10, and go to Step 5.

(Note: In practice, of course, we do not in fact actually compute The finear search A1gOr~lh~

matrix inverses but use the iterative formulas of Rosen. ) P@ is an

(n + 1) x (n + 1) matrix which projects every vector orthogonal
Step 1: Estimate any new function to become active. We consider

to the space spanned by the vectors V@il,V4<z,”” ‘,vqhj. Set
all inactive constraints +; and estimate, in turn, the step size to make

each & zero. Hence we calculate

q(l)= p(f)e.

(Note that q(~) is an uphill direction.)



836 IEEE TRANSACTIONS ON MICROWA?JE THEORY AND TECHNIQUES, OCTOBER 1975

Inotherw~rds, if q$j, islinear!w ecalculate~ isothat~i((z,z~) –

7M) = O and in general we linearize the ~$s.
Step %’: Omitting unlikely values of .i, estimate the optimum. by

linearizing the minimax function.

Forj ~ l(zh,c) do the following. If r~ <O orTi > 10&neglect it

as inadmissible. Otherwise, calculate

Yi~421~~(@) ‘~~V~~(@)% i c [M].

Put
.
F~ = max~ij.

ie[M]

Now, determine 1 such that
A

Ft = min Fi, j ~ ~(@,e)\{j17~ <O or r~ > 104}.

Pllt TOP* = 7z.

Step .$: Determine if .o~t is acceptable. Calculate the true minimax

value at

~k = xk — r.pt~.

If this new value is an improvement over the old value, then take

r = ro~~ and Xk+l = @.

Otherwise, use cubic line search on the maximum of the functions

taking ~o.~ as an upper bound.

In [8] the authors proved that the above algorithm will converge

to the minimum under mild assumptions.

Comments on the Algorithm

One useful way of looking at the above algorithm is as follows.

First, our direction of search is obtained by formulating the mini-

max problem as a nonlinear programming problem in the standard

way. Whereupon the horizontal and vertical steps are obtained

analogous to Corm [9] and Corm and Pietrzykowski [10]. Secondly,

however, instead of using the determined horizontal dwection to

minimize a penalty function (as in [9] and [10]) we proceed to do

our minimization on the min-max function directly.

The horizontal step will give us a direction which decreases z and

is orthogonal to the gradient vectors V@il, V@i*, ”””, Vd,i (OWOW,”””,

@i, is a subset of the active constraints. The remaining active con-

straints locally increase in the direction given by the horizontal

step since this is the basis on which the projection matrix was

determined).

Thus we are trying to keep the values of +i1,+i2)... ,dvj unchanged
(if all of them were exactly equal their valuee will be equal to zero

since z = maxi, M f~).

Now let us assume that we succeed in keeping Oil... @;junchanged.

Since z decreases it follows that the f~ will decrease by the came

amount (from the definition of d,).
In the case of linear functions the above is exactly true. In the

general case it is approximately true in that we are linearizing locally.
This showe that the horizontal dkection tries to follow the path

of discontinuous derivatives. The way we build up the projection
matrix guarantees that the gradient vectors V@;l,V@~a,..., V@~j are
linearly independent and therefore the matrix N(j) (N(i)) p is non-

singular and its inverse exists (this wzs implemented by Corm and

Pletrzykowskl [10]). This is an important difference between the

way we handle the projection matrix and the way Rosen does [111.

The vertical step tries to make the near active functions equal,

and by doing this an effort is made to get exactly on the line of the

dkxontinuous derivatives, which is very desirable when we are close

to the optimum point.

In practice we do not use an exact cubic linear eemch but merely

ask for sufficient improvement in the minimax imlue.

If in Step 4 of the main algorithm we decided to do the vertical

step then we dispense with the estimation of ~oD~ as above and

merely do the cubic search. The motivation for this is as follows.

The estimates for .J are based on the surmise that some new func-

tion will become active, whereas the vertical step is based on the

assumption that this will not be the case.

III. EXAMPLES

The algorithm has been applied to a wide range of problems. We

will illustrate here its performance on the design of a two-section

and a three-section 100-percent relative bandwidth 10:1 trana-

mission-line transformer problem [3], [41 [6]. Speci6cally, we

want to

where p is the reflection coefficient, + is the frequency in gigahertz,

*1 = 0.5 GHz, $. = 1.5 GHz. As usual we will use a finite number

of sample points of $, and so we obtain

All the numerical results were obtained by using double preckion
IBM 360/75 computer.

Two-iSection Trans~ormer

For the two-section transformer we ueed 11 uniformly epaced

frequency pointe of z. The eection lengths 1, and L and the charac-

teristic impedances z, and .22‘maybe considered as variables.

At first we kept 11 = 12 = 1. and used Z1 and 22 as variables. la is

the quarter-wavelength at center frequency. Starting from the point

Z1 = 1, zz = 3, the new algorithm generated the results shown in

Table I. It is important to note that the algorithm took 9 iterations

and only 16 function evaluation to produce very accurate results.

This means that the linear search algorithm works extremely well

in thu case. In Fig. 1 we show the path taken by the algorithm, from

which it can be seen that the algorithm follows ridgee (a@) denotes

the point reached at iteration a after b function evaluations).
Table II shows the results from four different starting points.

Table III shows the results by varying the lengths and the imp-

edances from two different starting points.

Three-Section Transformer

For the three-section transformer we uwd the following sample

points of ~ in gigahertz

{0.5,0.6,0.7,0.77,0.9,1 .0,1.1,1.23,1.4,1.5}.

Table IV shows the reeults from two different starting points. It

should be noted that, from the second starting point, we do not

TABLE I

RESULTS FOR THE TWO-SECTION 10:1 QUARTER-WAVE TRANSFORMER
OVER 1OO-PERCENT BANDWIDTH

!l -12=1= Startins point .1 = ‘1.0, 22 = 3.0
Y

Number of Number of a
FuIlct ion

Iterations Evalu. t ions ‘1 ‘2
Mf (x)

o 1 1 3

1 2 1.49152 3.00439 0.54402

2 3 1.62678 2.99891 0.49863

3 4 1.94797 3.94177 0.44792

4 5 1.98645 3.93111 0.43749

5 7 2.14988 4.31621 0.43134

6 s 2.15e28 4.31264 0.42933

7 10 2.20976 4.44209 0.42882

s k3 2.22696 4.45590 0.42877

9 14 2.2277? 4.45550 0.42858

9 16 2.23330 4.46661 o.42e57

a The number of function evaluations are cumulative, i.e., itera-
tion seven, for example, took two function evaluations.
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Fig. 1. Example illustrating the path taken by the new algorithm

TABLE II

OPTIMIZATION OF A TWO-SECTION QVARTER-WAVE TRANSFORMER
OVER 100-I%RcENT BANDWIDTH (11 = 12 = 1*)

Starting Point Yunct ion Evaluations+

‘1 ‘2

1.0 3.0 16

1.0 6.0 14

3.5 6.0 13

‘ Number of function evaluations to reach a reflection coefficient
of 0.42857.

TABLE III

OPTIMIZATION OF A TWO-SECTION 10:1 TRANSFORMER OVER A
1OO-PERCENT BANDWIDTH WITH VARIABLE LENGTHS AND

IMPEDANCES

Starting Point Function Evaluations

.tIlkq t21kq 21 Z2 A B

1.0 1.0 1.0 3 10 16

1,2 0.8 3.5 3.0 41 75

A: Function evaluations required to bring the reflection coefficient
witbiu 0.01 percent of its optimum value.

B: Function evaluations required to bring the reflection coefficient
to 0.42857.

appear to be converging rapidly to the solution. However, at the

point obtained in 80 function evaluations the “active” functions are

all within 10–8 of each other and the directional derivative for z in

the corresponding nonlinear programming problem is of order 10–5.

Furthermore, the active functions are correctly identified. Conse-

quently, it is reasonable to assume that the answ~r obtained is

acceptable. Should full accuracy be desired it can be obtained, but,

understandably, convergence is slow. In fact the answer is obtained

to 7 significant figures after 200 function evaluations.

TABLE IV

OPTIMIZATION OF A THREE-SECTION TRANSFORMED OVER A
1OO-PERCENT BANDWIDTH WITH VARIABLE LENG~ES AND

IMPEDANCES

Starting Point
-...

Function Evaluations

.sIlkq t21tq 1 /9.
3q’1 ‘2

A B
‘3

1.0 1.0 1.0 1.0 3.16228 10.0 3S(0.19735) 67(0.19729)

0.S 1.2 0.8 1.5 3.o 6.0 79(0.19731) 162(0.19729)

In comparing our numerical results with the previous published
results [3], [4], [6], it can be seen that the new algorithm is at

least as efficient as the existing algorithms, and our experience sug-

gests it is better.

IV. CONCLUSIONS

A new algorithm for computer-aided minimax optimization has

been presented. From the ltilted numerical results presented here,

along with other experience (see [8]) we have, it seems that the

algorithm is efficient. It is important to note that if the functions

are linear then the minimax function will be piecewi se linear and

the present algorithm will take into consideration this fact. The

authors are presently investigating this and preliminary results are

encouraging. In fact the algorithm [12] will terminate in a finite

number of steps in this case, and appears superior to any previous

linem Lo algorithm. Also, we found that our linear search works

very well, and to the authors’ knowledge it is the first time a special

linear search was used to minimize minimax functions

It should be pointed out that our horizontal component is the

same as the duection of search at each iteration of the algorithm

proposed by Bandler et at. [3], but in their paper t’hey have not

considered the vertical step which means that their algorithm will

only reach the optimum within a supplied tolerance :md final con-

vergence in their case is very difficult. Furthermore, they take the

linear programming approach whereas we use orthogonal projections.

The connections between these two approaches are well known. It

is suggested that optimization problems of a similar nature, for

example, standard nonlinear programming problems with an objew

tke function that is continuous but has dkxontinuous derivatives,

might be solved by an analogous method.

The mathematical background with proofs of convergence, and

so on, is rather involved and lengthy. It is available elsewhere [8].
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Minimax Optimization by Algorithms

Employing Modiiied Lagrangians

oLov tiiNARSSON

Absfracf—Two general, modified Langrangian algorithms
related to recent developments in nonlinear progr-%uning are pre-

sented. The methods give accurate results and are easy to program.

An N-section transmission-line transformer is used as a test

problem for minimax (equal ripple) optimization and the methods

are compared to existing algorithms for network optimization.

I. INTRODUCTION

There exists a large class of optimization problems of engineering

interest where some finite-dimensional functional is minimized (or

maximized) subject to an equal ripple condition. The purpose of

this short paper is to draw attention to the existence of two effec-

tive, recent algorithms which can be applied with advantage to this

type of problem. While not new, the methods do not appear to have

been applied to microwave problems before. The methods proposed

are quite general and the choice of a transmission-line transformer

problem as an example is only dictated by its use as a test problem

in previous works on minimax optimization [1 ]–[3].

Consider the following minimax problem. Find the vector z which

minimizes the real-valued function j(z); i.e., find

min.f(z) (1)
zelw

where f(x) is defined as

j(z) ~ max * \ p(z,v) [2 (2)
,61

and p is the reflection coefficient of the N-section lossless trans-

mission-line transformer shown in Fig. 1. In (2) the frequency u,

normalized to some suitable frequency PO, is varied either over a

closed interval

I = [Yl,lui] (3a)

or over a finite set

I = {vi]l~. (3b)

The components of the n-dimensional vector z in (1) are the (real)

characteristic impedances and the lengths of the transmission-line

sections. In one version the lengths of the sections are kept constant

and equal to hO/4 where ko = c/vO. The corresponding x vector is
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Fig. 1. 100-percent relative bandwidth 10:1 transmission-line

former.

x = (21,22,.. .,ZN), ~.jv

1,=12= ‘-- ‘&= ho/4.

trans-

(4a)

Alternatively, the lengthz of the transmission-line sections may also

be varied, resulting in an z vector

x = (.Z,,.Z2,- - ‘,zN,[,,i,, ” - .,t~), n = 2N. (4b)

The solution of the transmission-line transformer problem is known

in terms of Chebyshev polynomials. The optimal lengths all turn

out to be equal to ~0/4 and the optimal impedance can be deter-
mined from the polynomial expressing the insertion loss function

[4]. However, the methods of this investigation do not rely on this

special polynomial structure of the problem.

II. DISCUSSION OF METHODS

It is readly seen that the unconstrained minimization problem

given by (1), (2), and (3b) is equivalent to the following problem:

subject to the M — 1 nonlinear constraints

f,(z) –f,(z) <o, i = 2,3,. . .,M (6)

where we have defined

f.(x) Q * I P(%vi) 1’ (7)

and where we have used the fact that [ p (x, v) I takes its maximum

value at the left end point YI of the frequency range.

One well-established way of handling a nonlinear constrained

optimization problem is to introduce a Lagrange multiplier for each

constraint and construct a Lagrangian which will be stationary at

the solution point. However, in the treatment of nonconvex prob-

lems, the usefulness of the Lagrangian is limited by the fact that a

stationary point may not necessarily correspond to a minimum.

Hestenes [53 and Powell [6] independently discovered that this

drawback could be overcome by augmenting the Lagrangian with a

quadratic penalty function term making the problem locally convex

in a neighborhood of the solution point. A large number of cliff erent

. modified Lagrangians (also called “exact penalty functions” or

“augmented Lagrangians” ) have been proposed both for problems

with equality and inequality constraints [7], [8]. The modiiied

Lagrangianz employed in this short paper are given explicitly by

(Al) and (A4) of Appendm A.

In most cases the Lagrange multipliers related to an optimization

problem are unknown and have to be calculated during the mini-

mization procedure. One way of doing this is to employ the saddle-

point property of the modhkxi Lagrangian L (z,p) in the product

space [Z,M] where p is the multiplier vector, and solve the dual

problem, i.e., to find

max min L (z)p) (8)
pdw .dw

by iterating alternately in x and P space. The updating of the
multipliers can be done in dMerent ways. A very simple rule is used
h the Hestenas-Powell method. For the routine VI?OIA [9] advan-

tage is taken of the fact that if the unconstrained minimizations are


